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Abstract

In this paper, we investigate the problem on how light rays are reflected inside a given 
ellipse by using technology tools. We first solve the problem in a quite general setting with 
GeoGebra and next we investigate some particular cases by means of the computer algebra 
systems Maxima and Maple R©. We study several cases through some computer programs done 
with these CASs, with the purpose of answering questions about the periodicity of the light 
trajectories generated by the successive reflections of a beam of light on the ellipse.

1 Introduction
The problems addressed in this paper can be thought as problems in the theory of elliptical billiards,
and therefore, we will be using some well known results from this subject in order to answer the
questions we are interested in. Let us say that billiards are an important class of dynamical systems
that were introduced by Birkoff around 1927 and can be thought as systems in which a particle moves
freely inside a bounded region of the plane (two dimensional billiards) in such a way that every time
the particle hits the boundary, it bounces elastically in the well known sense of geometrical optics:
the angle of incidence is equal to the angle of reflection. Here, we assume that the billiard region is a
convex domain of the plane and the billiard boundary is an ellipse, hence the name elliptical billiards
[5].The purpose of this paper is to introduce some computational programs in order to investigate
several specific problems about how light rays are reflected inside ellipses, according to the law of
light reflection on smooth surfaces, the so called specular reflection. This law states that the angle of
incidence is equal to the angle of reflection, where this angle can be measured relative to the reflecting
surface, as shown in Figure 1.

Notice that if we measure the angles of the incident and reflected rays with respect to the normal
line to the reflecting surface, then the law of reflection remains the same.
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Figure 1: Reflection law: ∠α = ∠β and ∠θ = ∠φ.

In our case, the reflecting surface is an ellipse and the incidence and reflected rays at any point
of the ellipse will be measured relative to the normal of the tangent line to the curve at that point, as
illustrated in Figure 2.

α β

Figure 2: Reflection law on the ellipse: ∠α = ∠β.

Thus, starting with an initial line representing a beam of light aimed to an arbitrary point on the
ellipse, our computational program should be able to do the following:

1. calculate the coordinates of the intersection point on the ellipse and the line representing the
incident ray;

2. calculate the equation of the tangent line at that point and the equation of the corresponding
normal;

3. determine the equation of the line representing the reflected ray (this is done by reflecting the
incident line through the normal line);

4. calculate the coordinates of the point of intersection of the reflected line and the ellipse;

5. repeat the process until some stopping condition is achieved;

6. verify that the last calculated point determines a line that coincides with the initial ray.

7. plot all the objects of interest;
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Here, we shall recall that if a straight line in the plane has equation given by ax+ by + c = 0 and
if (u, v) ∈ R2 is an arbitrary point that is reflected through this line, then the coordinates (u′, v′) of
the reflected point are given by [9]:

u′ = u− 2a(au+ bv + c)

a2 + b2
, (1)

v′ = v − 2b(au+ bv + c)

a2 + b2
. (2)

These formulae are extensively used in our computational programs. See Figure 3.
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Figure 3: Reflecting a point through a straigth line.

The computational tasks described above will be accomplished by using two computer algebra
systems, namely Maxima (http://maxima.sourceforge.net/) and Maple R© (www.maplesoft.com), so
the interested reader can have different options for performing her/his own computations and com-
paring the results reported in this paper. Nevertheless, because of the readiness and user’s friendly
environment provided by GeoGebra (www.geogebra.org), we first solve the problem in a quite general
setting by using this dynamic geometry software.

In the case of elliptical billiards, trajectories have a well known behaviour: they always remain
tangent to a confocal conic, that can be another ellipse or an hyperbola. More precisely, suppose
the boundary Γ of our billiard is an ellipse in R2 with foci at points F1 and F2. If some segment of
the billiard trajectory does not intersect the segment F1F2, then no other segment of this trajectory
intersects F1F2 and all segments of the billiard trajectory are tangent to an ellipse γ with foci at F1

and F2. On the other case, if some segment of the trajectory does intersects F1F2, then all segments
of the billiard trajectory intersect F1F2, and all of them are tangent to an hyperbola h with foci at F1

and F2 (See Figure 4). Elementary proofs of these assertions can be found in [3, 8].
The conics γ and h are called caustics. More generally, caustic curves in a billiard are curves that

have the following property: if a segment of a billiard trajectory is tangent to such a curve, then the
reflected segment is also tangent to the curve [8].

An important question concerning elliptical billiards is if a trajectory closes after a finite number
of bounces. That is, let us suppose that a billiard trajectory starts at point P0 on the ellipse and
continues through points P1, P2, . . . , also on the curve. We would like to figure out if the given
trajectory eventually closes. For this to happen, it is necessary that after reaching a point Pn−1 on the
ellipse, the next point of the curve touched by the trajectory should be P0. Thus, Pn = P0, and the
next point of reflection, namely Pn+1 should satisfy Pn+1 = P1, and therefore, it should happen that
P0P1 = PnPn+1, so Pn+2 = P2, and so on. Note that in this case the trajectory is periodic.
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Figure 4: Trajectories in elliptical billiards.

Conditions for periodicity of trajectories inside conics were investigated by Cayley, as early as
1853, in connection with the very famous Poncelet’s Theorem, also named Poncelet’s Porism or
Poncelet Closure Theorem [3, 4, 5, 6, 8]. In the case of ellipses, this theorem can be stated in the
following terms: Suppose two ellipses in the plane are given, in such a way that there is a closed
polygon inscribed in one ellipse and circumscribing the other. Then there exist infinitely many closed
polygons behaving like the original one. In fact, every point of the ellipse is a vertex for one of those
polygons [4, 5].

Although the history of Poncelet’s Theorem is very interesting and there are many deep math-
ematical results in connection with this theorem, the conditions for periodicity obtained by Cayley
are far beyond the scope of this paper. Instead, we can say that if we think of a two dimensional
elliptical billiard as a dynamical system, then it is a completely integrable Hamiltonian system with
two degrees of freedom and two independent constants of motion (first integrals), namely, the total
energy of the system (say H , in our case, kinetic energy), and the the other one being the dot product
of the two focal angular momenta, L = L1 · L2, which can be calculated explicitly [2, 3, 7, 10].

Therefore, according to the Liouville-Arnold Theorem [1], the dynamics of the system takes place
in a two dimensional invariant torus (Liouville torus), T2 = {(θ1, θ2) mod 2π}, and we can calculate
action-angle coordinates (I1, I2, θ1, θ2), where the action variables Ij = Ij(H,L) depend only on the
constants of motion, and are again, first integrals of the system. Thus, the dynamics of the billiard
can be described by the two frequencies (ω1, ω2) which are related to the angle coordinates θi by
ωi = dθi/dt. In this situation, the condition for periodic motion is that ω1/ω2 be a rational number.

We will not go further in this direction nor calculate explicit conditions for periodicity since for
doing so we need to write down the equations of motion for our billiard in, for example, elliptical co-
ordinates (as in [2, 3, 7]), and then to perform all the necessary computations which takes considerable
space. Instead, we recommend the interested reader to take a look at the cited references.

Thus, our goal is limited in the sense that we will only investigate, by means of some computer
programs in GeoGebra, Maxima and Maple, if a given particular trajectory, defined by points P1, P2,
. . . , Pn, . . . , in an elliptical billiard, closes after a finite number of bounces.
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2 Setting of the problem
Consider an ellipse written in canonical form as

x2

a2
+
y2

b2
= 1, (3)

with semi-axes of lengths a and b, satisfying
a

b
=
√

3, as shown in Figure 5. Here, we have to say that
there is no particular reason for choosing these settings for our ellipse, and since this is an exploratory
paper any lengths for a and b can be chosen. In Section 3 we do not impose this constraint.
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Figure 5: Ellipse corresponding to equation (3).

The interior domain bounded by the simple closed curve represented by equation (3) is a simply
connected region and we choose an arbitrary point on this domain as the starting point from which a
light ray is aimed into a point on the curve, which it is reflected according to reflection’s law, and the
reflected ray reaches another point on the ellipse where it is reflected again and so on.

More specifically, in the several situations we address here, the coordinates of an initial point E
are given in the form E =

(
0, s), for different values of parameter s, and the beam of light starts from

here and it is aimed into point B = P1 = (a, 0) on the ellipse where, after reaching this point, it is
reflected again. Here, we represent this ray by line segment EB, as can be seen in Figure 5. The law
of reflection tells us that the angle of incidence equals the angle of reflection, which are represented
by α in Figure 5, both measured with respect to the normal line through B, that in this case turns out
to be the x-axis. After being reflected, the light beam touches the ellipse at point P2, represented by
line segment P1P2, and it is reflected again, reaching the ellipse at point P3 (line segment P2P3), and
so on. The problem here is to determine if after a number n of successive reflections we get a point
Pn on the ellipse in such a way that the reflected ray from this point coincides with line segment PnP1

and thus, this ray coincides with the original one EB, as depicted in Figure 5. Once again, we have to
say that there is no particular reeason for choosing points E and B as we did. Moreover, in Section 3
we eliminate this restricion.

Notice that in order to solve this problem, the point Pn should coincide with point P0 which is
defined by the initial light ray from point E since it is one of the two intersection points on the ellipse
determined by the straight line passing through points E and B. That is, Pn = P0, but additionally,
one should verify that P0P1 = PnPn+1 (see Figure 5).
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Thus, we need to run a computer program that calculates every one of the points P0, P1, P2, P3, . . .
on the ellipse that are touched by the reflected rays, as well as the lines representing those rays,
namely, segments P0P1, P1P2, P2P3, . . . , and, in some way, to figure out if we can reach the situation
described above.

On the other hand, because of floating point calculations, it is not easy to determine computation-
ally when a pair of points on the ellipse will coincide. Thus, we need to specify in advance when two
points will be numerically considered as (practically) the same point. Therefore, we have to set the
tolerance error we will be willing to accept. For example, if we set this numerical error to be ε, with
0 < ε� 1, and for points x, y ∈ R, we have | x− y |< ε, then we will say that x u y. Similarly, for
points p = (x1, y1), q = (x2, y2) ∈ R2 satisfying ‖ p − q ‖=

√
(x1 − x2)2 + (y1 − y2) < ε, we are

able to say that p u q. Notice that we cannot go beyond this, unless it is specifyied another smaller
value for the numerical error. The symbol “u” can be read as “approximately equal”.

Thus, if we set ε = 0.0001, then | x − y |< 0.0001 means that x and y coincide, at least, up
to the third digit after the decimal point and both will be treated, for practical considerations, as the
same point, as is the case for x = 7.123456789 and y = 7.123546789, for example. For points
p, q ∈ R2, saying that ‖ p − q ‖< 0.0001 means that the Euclidean distance between these points
is less than the specified tolerance. As for example, for p = (7.123456789,−11.987654321) and
q = (7.123446789,−11.987664321) we have ‖ p− q ‖≈ 0.0000141421356 < 0.0001.

We mention this because we are faced with that situation in our computer programs since we have
to compare, for closeness, each one of the points P1, P2, P3, . . . with point P0 and need to determine
if for some n, the point Pn is close enough to P0 and the reflected rays P0P1 and PnPn+1 can be
considered as the same.

3 Solving the problem with GeoGebra
Taking advantage on the readiness and easy of use of the dynamic mathematics software GeoGebra,
we originally started out with some explorations of the problem but later we were able to solve it in
a more general setting than that presented in Section 2, in the sense that we are not constrained by
condition a/b =

√
3, and we can vary the lengths a and b of the ellipse’s semi-axes, as well as points

E and P1 (see Figure 5).
In what follows, we will describe how to use GeoGebra in order to get some good answers and

we achieve this with a relatively simple program consisting of very few lines which show us the
powerfulness of this dynamic geometry software.

First, after launching GeoGebra, we define two sliders of numeric type, named a and b, for the
ellipse’s semi-axes, both with minimum and maximum values at 0.01 and 5.0, respectively, and in-
crementing them by a step of 0.01. Next, introduce the equation of the ellipse directly at the input
bar:

xˆ2/aˆ2 + yˆ2/bˆ2 = 1

Notice that the label assigned by GeoGebra to this conic is c and will be used later. Also, in order
to have a better picture, we remove the grid, and both axes x and y on the graphics view of our
GeoGebra window. Now, define another numeric type slider, say t, that will be used to control the
first incidence point; this slider’s minimum and maximum values are equal to 0 and 2π, respectively,
incrementing it by 0.01. Next we introduce a point P at the input bar:

195



The Electronic Journal of Mathematics and Technology, Volume 13, Number 3, ISSN 1933-2823

P = (a*cos(t),b*sin(t))

This point can travel along the entire curve and will be the point on the ellipse where the beam of
light is reflected for the first time.

Now we set another two sliders of numeric type, that we denote by Ex and Ey, that will control
the x and y coordinates of point E, recalling that this is the point where the light ray starts, and it is
defined by

E = (Ex,Ey)

The sliders, Ex and Ey, have minimum and maximum values equal to −5 and 5, respectively, incre-
menting them by a step of 0.01. Notice that so defined, pointE runs inside the square [−5, 5]× [−5, 5]
and can be used to represent, virtually, any point inside the ellipse.

The line through points E and P intersects the conic c at another point, that we denote by P0, and
which is gotten by typing directly in the commands bar:

P_0 = Intersect(c,Line(E,P),1)

where the number 1 in this command line stands for the first point of intersection. The second point
of intersection is P , but for iterative purposes we give it another name by setting:

P_1 = Intersect(c,Line(E,P),2)

Points P0 and P1 will be the first two entries of a list that will consists of point P0 and the points on
the ellipse where the beam of light is reflected.

Next, we calculate the tangent line to the ellipse at point P1:

Tg1=Tangent(P_1,c)

Afterwards, we get the line through point P1 that is perpendicular to line Tg1:

Perp1=PerpendicularLine(P_1,Tg1)

Now, we are in position to reflect point P0 over line Perp1, in order to get the second point where
the beam touches the curve:

Pr1=Reflect(P_0,Perp1)

Notice that for t = 0, the reflected point Pr1 is on the ellipse, but varying the slider t the situation
changes and the reflected point falls outside the curve. This has to be taken into account in what
follows.

We have all the elements that are necessary to define a list of points by using the iterative capabili-
ties of GeoGebra. For that purpose, define a numeric type slider, say n, with 1 and 200 as its minimum
and maximum values, respectively, incrementing in steps of value 1, and thus the values of n are the
positive integers from 1 through 200. Clearly, the reader can set these values as she/he prefers.
Now we type in the input bar the following commands:

IterationList(Intersect(c,Reflect(Line(A,B),
PerpendicularLine(B,Tangent(B,c))),2),
A,B,{P_0,P_1},n)
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Some explanation is needed here. The GeoGebra command

IterationList(<Expression>, <Variable Name>,...,<Start Values>,
<Number of Iterations>)

give us a list of length n+ 1, where n is the number of iterations. The elements of this list are gotten
by iterating the defining expression, starting at the given values.

In our case the expression being iterated is defined by the Intersect command and calculates
the second (2) point of intersection of the ellipse c with a line. Thus, we can think of this expression
as one of the form Intersect(c, Line L, 2), where Line L is the object that changes, and
with each iteration, the result obtained is a point that is appended to a list. Notice that the varying
arguments in our expression are A and B, and represent points. The first value for A is the point P0

and the first value for B is the point P1, as settled down with the ‘start value’ {P_0,P_1}
(Also notice that we have used brackets to define these starting values.)

Let us describe more explicitly this process (we refer the reader to Figure 5):

1. Determine Line L as follows:

(a) Calculate the line passing through points A and B (Line(A,B)). Thus, the first line
calculated is the one defined by points P0 and P1.

(b) Calculate the tangent line to the ellipse at point B (Tangent(B,c)). The first of these
tangents is the one that is tangent to ellipse c at point P1.

(c) Calculate the perpendicular line to Tangent(B,c) at point B. In the first iteration this
will be the perpendicular line to Tangent(P1,c) at point P1.

(d) Reflect the line obtained in 1a onto the line calculated in 1c
(Reflect(Line(A,B),PerpendicularLine(B,Tangent(B,c))).)

2. Calculate the second point of intersection of the ellipse c with the line obtained in 1d
(Intersect(c, Line L, 2).) The first point thus obtained is P2.

3. Next, A and B take the values P1 and P2, respectively, giving point P3 as the result, and so on.
This process give us a list of points {P0, P1, P3, . . .} (Remark that if we do not specify a name
for the list obtained with the command IterationList, GeoGebra automatically assigns a
label to it. In our case, it was L1 and we will use this label in what follows.)

Finally, we define a sequence of segments by joining consecutive points of the list L1 by typing
directly in the input bar:

Sequence(Segment(Element(L_1,i),Element(L_1,i+1)),i,1,n)

The Sequence command produces a list L2 whose elements are the lengths of the segments
P0P1, P1P2, P2P3, . . . . Each one of these segments represents the reflection on the ellipse of a beam
of light that started at point E and was aimed into point P1 on the curve. Those reflected rays can be
fully appreciated in Figure 6, which summarizes all we have described here, but moreover, we can
see that under the given conditions, we have a closed trajectory.

Remark that Figure 6 was produced by using the facilities within GeoGebra for exporting our
work, and we have done so by rendering the figure gotten in GeoGebra’s graphic view into a figure in
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Figure 6: Reflection points inside an ellipse, with GeoGebra.

PDF format. Notice also how is clearly depicted in Figure 6 a caustic curve that is the tangent curve
to the reflected rays represented by the line segments. In this case, the caustic is a confocal ellipse,
but varying the slider t, and consequently the point P1, we are able to appreciate the other kind of
caustic in the case of elliptic billiards, namely, a confocal hyperbola (See Figure 7b.)

On the other hand, the decorations in Figure 6 (color and size of points; color, lengths and posi-
tions of sliders; color and line width for segments, etcetera) are up to the reader and we remark that
in order to have a more clear image in our GeoGebra’s graphic view, many of the objects constructed
in the process leading us to solve our problem are not shown. But again, the reader can easily change
the properties of all the involved objects.

Finally, in Figure 7 we show two other cases for illustrative purposes in which occur the two types
of caustic curves.

4 Solving the problem with the CAS Maxima
In this section we document several computer programs, done with the CAS Maxima, in order to
solve some particular problems concerning the reflections of light rays inside ellipses, we described
above. We investigate different cases and get some interesting results that can be used for educational
purposes in the classroom.

4.1 Case E =
(
0, b tan(π/12)

)
We document here one of the computer programs we have writen in order to solve our problem for
the case E =

(
0, b tan(π/12)

)
, where a and b are related by a = b

√
3, and a = 1.5 is the length of
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(a) Do we have a closed trajectory in this case? (b) One case of a caustic curve being an hyperbola.

Figure 7: Two other cases with GeoGebra

the major semi-axis of the ellipse given by (3), shown in Figure 5.
First, we reset all values assigned by Maxima to any variable in the program and load the drawing
machine. The kill command is very useful every time we need to start all over again.
(%i1) kill(all);
(%i2) load(draw)$
Now, we define a Maxima function (procedure) for calculating the coordinates (xr, yr) of a point
(p, q) after being reflected through a straight line having equation Ax + By + C = 0, according to
formulae (1)-(2):
(%i3)Reflex(p,q,A,B,C) := ([xr,yr],

xr : p - 2*A*(A*p + B*q + C)/(Aˆ2 + Bˆ2),
yr : q - 2*B*(A*p + B*q + C)/(Aˆ2 + Bˆ2),
Preflx : [xr,yr])$

Here, the variables p, q, A,B,C, are local and do not affect any other appeareance afterwards. We
will be using this function extensively in our program. Next, introduce the lenghts of the ellipse’s
semi-axes and set the equation of the ellipse in Maxima’s implicit form in order to plot it later:
(%i4) a:1.5$ b:a/sqrt(3.0)$
(%i5) Ellipse : implicit(xˆ2/aˆ2 + yˆ2/bˆ2 = 1, x,-a-0.5,a+0.5,

y,-b-0.5,b+0.5)$

By implicit differentiation of the canonical equation of the ellipse (3), we can calculate the slope of
the tangent line at any point of the ellipse and set it as a function that will be repeteadly called:
(%i6)Slope(x,y) := - (bˆ2/aˆ2)*(x/y)$
As was said above, we start with an initial pointE = (x0, y0) (pointE in Figure 5), so let us introduce
it to Maxima:
(%i7) x0:0.0$ y0:ev(b*tan(%pi/12),numer)$
(%i8) E:[x0,y0]$
The function ev(..., numer) is used here in order to get a floating point value for y0. Now,
introduce point P1 which is the point where the initial light ray touches the ellipse for the first time
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(point B = P1 in Figure 5):
(%i9) P[1]:[a,0.0]$
We use points E and P1 to compute the slope of the straight line passing through them and the
equation for this line is set in Maxima’s implicit form:
(%i10) m[0]: (P[1][2] - E[2])/(P[1][1] - E[1])$
(%i11) line[0] : implicit(y - m[0]*x + m[0]*P[1][1] - P[1][2] = 0,

x, -a-0.5,a+0.5, y,-b-0.5,b+0.5)$
Notice that line[0] contains the light ray EP1. Next, we calculate the intersection points of
line[0] with the ellipse in order to determine point P0, as depicted in Figure 5. For perform-
ing these calculations we use the function solve, requiring the output to be in numerical form by
means of the command ev(..., numer). We also use the function ratprint with the value
false since we do not want to see in the computer screen the messages of Maxima informing us
about the many conversions of floating point format into fractions.
(%i12) ratprint : false$
(%i13) Pellips : ev(solve([xˆ2/aˆ2 + yˆ2/bˆ2=1, y-m[0]*x

+ m[0]*P[1][1]-P[1][2]=0],[x,y]),numer);
Usually, the Maxima output we get is of the form

[[x=1.5,y=0],[x=-1.299038105676657,y=0.4330127018922199]]

Notice that the first term in this list is the point [x=1.5,y=0] which we already have (it isB = P1).
Nevertheless, sometimes the output could be in the form

[[x=-1.299038105676657,y=0.4330127018922199],[x=1.5,y=0]]

and we have to swap for getting the correct point. We choose it through the following commands:
(%i14) if abs(rhs(Pellips[1][1]) - P[1][1]) < 0.0001 then

P[0]:[rhs(Pellips[2][1]),rhs(Pellips[2][2])]
else
P[0]:[rhs(Pellips[1][1]),rhs(Pellips[1][2])]$

Here, rhs(Pellips[i][1]) refers to the right hand side of first entry of the i-th term in the
list.
We will use point P0 as a comparison point by measuring the Euclidean distance from this point to
each and all of the incidence points P1, P2, P3, . . . , in order to see if we can get a closed trajectory
inside the ellipse. That is, if there is a point Pn such that P0 u Pn, and then calculate incidence point
Pn+1, so that P0P1 = PnPn+1, for which it is necessary that Pn+1 = P1.
Since we are interested in the points of the ellipse touched by the reflected rays, we collect those
points and the straight lines representing those reflected rays, into a list of points and a list of lines.
We initiate these lists as follows:
(%i15) Points:[P[1]]$
(%i16) Lines:[line[0]]$
The first point to be reflected on the normal line through point P1 is point E, and the image of this
reflection is point E ′ (see Figure 5). Afterwards, we calculate the equation of the line passing through
this reflected point and point P1 which contains segment P1P2 representing the reflected ray from
point P1, as shown in Figure 5. The equation for this normal line (x-axis) is y = 0 and hence we
introduce the parameters values a = 0, b = 1, and c = 0 of the straight line ax + by + c = 0,
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according to formulae (1)-(2). See also Figure 3.
(%i17) a0:0.0$ b0:1.0$ c0:0.0$
Now, the most important part of the Maxima’s computer program is the loop we present next.
(%i18) for i:1 step 1 while (sqrt((P[0][1]-P[i][1])ˆ2

+ (P[0][2]-P[i][2])ˆ2) > 0.01)
do(

Pr[i]:Reflex(x0,y0,a0,b0,c0),
m[i]:(Pr[i][2] - P[i][2])/(Pr[i][1]- P[i][1]),
line[i]:implicit(y - m[i]*x + m[i]*P[i][1]-P[i][2]=0,

x, -a-0.5,a+0.5, y,-b-0.5,b+0.5),
Lines:append(Lines, [line[i]]),
Pinters[i]:ev(solve([xˆ2/aˆ2 + yˆ2/bˆ2=1,y-m[i]*x

+ m[i]*P[i][1]-P[i][2]=0],[x,y]),numer),
if abs(rhs(Pinters[i][1][1]) - P[i][1]) < 0.00001 then
Pnew[i]:[rhs(Pinters[i][2][1]), rhs(Pinters[i][2][2])]
else
Pnew[i]:[rhs(Pinters[i][1][1]), rhs(Pinters[i][1][2])],
Points:append(Points, [Pnew[i]]),
mtg[i]:Slope(Pnew[i][1],Pnew[i][2]),
TgLine[i]:implicit(y-mtg[i]*x+mtg[i]*Pnew[i][1]

- Pnew[i][2]=0, x,-a-0.5,a+0.5,
y,-b-0.5,b+0.5),

mperp[i]:-(1/mtg[i]),
LinePerp[i]:implicit(y-mperp[i]*x+mperp[i]*Pnew[i][1]

- Pnew[i][2]=0, x, -a-0.5,a+0.5,
y,-b-0.5,b+0.5),

kill(a0),
kill(b0),
kill(c0),
a0 : -mperp[i],
b0 : 1,
c0 : mperp[i]*Pnew[i][1] - Pnew[i][2],
P[i+1] : Pnew[i],
kill(x0),
kill(y0),
x0 : Pr[i][1],
y0 : Pr[i][2]
);

Several remarks are in order in relation with this code.

1. The loop starts with i = 1, advancing in whole steps 2, 3, 4, . . . and stops at step n, when the
(euclidean) distance between a (to be calculated) point Pn and P0 is less than 0.01. This is done
with the while operator. (There is no diference if we set the tollerance to be 0.001, as can be
checked out.) Notice also that the first comparison is between points P0 and P1, that are already
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defined.

2. Pr[i] denotes the point obtained by reflecting the point (x0, y0) over the normal line through
the (to be calculated) point Pi on the ellipse. This normal line has equation a0x+ b0y+ c0 = 0,
and it is labeled as LinePerp[i] since it is perpendicular to TgLine[i], the tangent line to
the ellipse at point Pi. The point we reflect first is E, as pointed out above, and thus Pr1 = E ′

(see Figure 5).

3. Next, use Pri and Pi to compute slope m[i] in order to determine line[i], passing through
them. After this, calculate Pnew[i] as the intersection point of the ellipse and line[i], and
use it to compute mtg[i], the slope of TgLine[i] which is the tangent line to the ellipse
at Pnew[i]. After setting the equation in Maxima’s implicit form for TgLine[i], we can
determine the line perpendicular to it, LinePerp[i], at Pnew[i]. Note that Pnew[i]
becomes point Pi+1, and so on.

4. After using (x0, y0) in step i, the new values for x0 and y0 in step i + 1 are the coordinates
of point Pr[i]. Thus, Pr[i+1] uses these new values to get the reflection of Pr[i] over
the normal line LinePerp[i] passing through point Pi+1. Notice also how the values of the
parameters a0, b0, c0 are changed to agree with those of LinePerp[i].

Continuing with our program, the following command give us the time required to perform the cal-
culation on the loop until it finishes:
(%i19) time(%);
(%o19) [25.978]
As we pointed out above, we collect the points on the ellipse touched by the reflected rays in the list
labeled Points. The number of elements of this list is gotten as follows:
(%i20) length(Points);
(%o20) 47
Now we can plot all objects of interest as shown in Figure 8a:
(%i21) wxplot_size:[650,500]$
(%i22) wxdraw2d(color=black, Ellipse,

color=red,point_type=filled_circle, points([E]),
points(Points),
color=dark-blue,point_type=filled_circle,
points([P[0]]),
color=blue, [Lines],
proportional_axes=xy
);

Let us make some comments on what we have obtained.

1. The graph (Figure 8a) clearly suggests that there is a confocal ellipse, tangent to each of the
line segments inside the original ellipse, namely, that a caustic exists for the conditions of our
problem.

2. We also have a good hint that the trajectory closes after 47 iterations.
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(a) Reflection of a light ray in the ellipse
given by (3).

(b) Segment P0P1 in line[0] is “equal” to
segment P47P48 in line[47].

Figure 8: Outcomes of Maxima for the case E =
(
0, b tan(π/12)

)
.

3. In fact, comparing points P0 and P47, we get the following:
(%i23) P[0]; P[46]; P[47];
(%o23) [-1.299038105676657,0.4330127018922199]
(%o24) [-1.142678264684355,-0.561036654601091]
(%o25) [-1.300770762793338,0.4312754041452849]

Notice how “close” are to each other:
(%i26) sqrt((P[0][1]-P[47][1])ˆ2 + (P[0][2]-P[47][2])ˆ2);
(%o26) 0.00245363080871805

That is, the Euclidean distance between them satisfies d(P0, P47) < 0.0025.

4. Since the while loop stops at i = 47, the last line calculated was line[46]. Thus, unless
we modify the code of the program, we cannot go further than this. However, in what follows
we make some more calculations.

In order to get a better picture, let us compare the straight lines containing the segments P47P1 and
P0P1.
First, we need to calculate the equations of the tangent line to the ellipse at point P47, as well as that
of the normal line at that point; thus, the slopes are, respectively:
(%i27) mtg[47] : Slope(P[47][1],P[47][2])$
(%i28) mperp[47] : -(1/mtg[47])$
Therefore, the equations of the referred lines are, respectively:
(%i29) TgLine[47]:implicit(y - mtg[47]*x + mtg[47]*P[47][1]

- P[47][2]=0,x, -a-0.5,a+0.5, y,-b-0.5,b+0.5)$
(%i30) LinePerp[47]:implicit(y - mperp[47]*x + mperp[47]*P[47][1]

- P[47][2]=0,x, -a-0.5,a+0.5, y,-b-0.5,b+0.5)$
Both of these lines are depicted in Figure 8b, above.
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Next, we reflect point P46 over line LinePerp[47] to get a point that we label as Pr[47]:
(%i31) Pr[47]:Reflex(P[46][1],P[46][2],-mperp[47],1,

mperp[47]*P[47][1]-P[47][2])$
The slope of the line passing through points P47 and Pr47 is the following:
(%i32) m[47] : (Pr[47][2] - P[47][2])/(Pr[47][1]- P[47][1])$

We are now in position to calculate the equation for line[47] and to find the intersection point of
this line with the ellipse:
(%i33) line[47]:implicit(y - m[47]*x + m[47]*P[47][1]-P[47][2]=0,

x, -a-0.5,a+0.5, y,-b-0.5,b+0.5);
(%i34) Pinters[48]:ev(solve([xˆ2/aˆ2 + yˆ2/bˆ2=1,y-m[47]*x

+ m[47]*P[47][1]-P[47][2]=0],[x,y]),numer);
Once again, we need to choose the correct point:
(%i35) if abs(rhs(Pinters[48][1][1]) - P[47][1]) < 0.0001 then

Pnew[48]:[rhs(Pinters[48][2][1]),rhs(Pinters[48][2][2])]
else
Pnew[48]:[rhs(Pinters[48][1][1]),rhs(Pinters[1][1][2])];

We get the following answer:

Pnew[48] = [1.499999819831534, 4.244625489607216 ∗ 10−4]

As pointed out before, Pnew[48] becomes point P48, and if everything goes as expected, P1 and P48

would be practically the same. Recall that P1 = (1.5, 0). Thus, let us compute the distance between
them:
(%i36) dist_P48_P1 : sqrt((Pnew[48][1]-P[1][1])ˆ2

+ (Pnew[48][2]-P[1][2])ˆ2);
The output gotten can be written as

dist P48 P1 = [1.499999819831534, 4.244625489607216 ∗ 10−4]

That is, we can say that

d(P48, P1) = 4.244625871981054 ∗ 10−4 = 0.0004244625871981054 < 0.0005,

which tell us that P48 u P1. Therefore one could expect that line[47] would be “equal” to
line[0]. We illustrate this in Figure 8b by plotting the objects of our interest:
(%i37) wxdraw2d(color=black, Ellipse,

color=red,point_type=filled_circle,
points([E,P[1],P[46],P[47]]),
color=blue, points([Pr[47],Pnew[48]]),
color=blue, [line[45],line[46]],
color=green,TgLine[47],
color=cyan,LinePerp[47],
key="line[0]",color=red, line[0],
key="line[47]",color=black,line[47],
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proportional_axes=xy
);

Therefore, the conclusion is that starting with a light ray at point E =
(
0, b tan(π/12)

)
inside the

ellipse given by equation (3) and reflecting it into point P1 = (1.5, 0), the successive reflection make
that the trajectory of the ray closes after 47 reflections.

4.2 Case E =
(
0, a tan(π/12)

)
It is clear that this case is completely similar to the previous one regarding our Maxima program and
the only thing that needs to be changed in that program is the initial point E. Nevertheless, we will
see how different the overall behaviour turns out to be.
Thus, we will only document here the parts that are different in the Maxima code. Let us starting by
introducing the initial point E = (x0, y0):
(%i7) x0:0.0$ y0:ev(a*tan(%pi/12),numer)$
(%i8) E:[x0,y0]$
The light ray starts from this point and it is aimed at point P1 = (a, 0) which is introduced the same
way as in input (%i9) at previuos Maxima code. After that, we calculate the slope of the line passing
through points E and P1 and use it to get coordinates of the point P0 on the ellipse (see Figure 5 and
inputs (%i13) and (%i14) in Section 4.1). We get the following answer:

P0 = [−0.9683428667784539, 0.6613904777964087]

Again, in order to obtain the equation for the line passing through points P1 and (the not yet cal-
culated) point P2, we first reflect point E over the normal line through P1, that is, over the x-axis,
getting the point E ′ as depicted in Figure 5, but corresponding to point Pr[1] in the while loop
of the Maxima code at input (%i18). The line by points P1 and E ′ is then computed. Point P2 is
the point of intersection of this line and the ellipse, which is obtained through the solve function in
the while loop. After this, the program computes the tangent and normal lines at P2 in order to
reflect point Pr[1] over this normal line, thus obtaining point Pr[2], which is used to calculate the
line through it and P2. This line intersects the ellipse at point P3, and so on.
As in the prevoius case, the while loop stops at step n when the distance between points Pn and P0 is
less or equal to 0.01. Here we notice the first differences between the two cases:
(%i19) time(%);
(%o19) [60.562]
and also the number of points calculated:
(%i20) length(Points);
(%o20) 106
Plotting the objects of interests give us a very nice picture as shown in Figure 9a.
Now let us continue and verify if everything goes as expected. We proceed first by comparing the
points P0 and P106, the last point computed:
(%i23) P[0]; P[105]; P[106];
(%o23) [-0.9683428667784539,0.6613904777964087]
(%o24) [-1.389666606461468,-0.3259993470780111]
(%o25) [-0.9617684510713951,0.6645804306788179]
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(a) Reflection of a light ray in the ellipse
given by (3). (b) Segment P0P1 in line[0] is “equal” to

segment P106P107 in line[106].

Figure 9: Outcomes of Maxima for the case E =
(
0, a tan(π/12)

)
.

We can observe the “closeness” between points P0 and P106 is less than 0.0075:
(%i26) sqrt((P[0][1]-P[106][1])ˆ2 + (P[0][2]-P[106][2])ˆ2);
(%o26) 0.007307444237297534
Next, let us compute the straight line line[106], since the last line computed in the while loop
was line[105]. First, we calculate the slope of tangent and normal lines at point P106:
(%i27) mtg[106] : Slope(P[106][1],P[106][2])$
(%i28) mperp[106] : -(1/mtg[106])$
Thus, the equations for these lines are, respectively:
(%i29) TgLine[106]:implicit(y - mtg[106]*x + mtg[106]*P[106][1]

-P[106][2]=0,x,-a-0.5,a+0.5, y,-b-0.5,b+0.5)$
(%i30) LinePerp[106]:implicit(y-mperp[106]*x+mperp[106]*P[106][1]

-P[106][2]=0,x,-a-0.5,a+0.5, y,-b-0.5,b+0.5)$
Now we reflect point P105 on the line LinePerp[106] in order to calculate line[106]. Call it
Pr[106]:
(%i31) Pr[106]:Reflex(P[105][1],P[105][2],-mperp[106],1,

mperp[106]*P[106][1] - P[106][2])$
The slope of LinePerp[106] can be computed next:

(%i32) m[106] : (Pr[106][2] - P[106][2])/(Pr[106][1]- P[106][1])$

Hence, the equation for line[106] is straightforward and we calculate the intersections points of
this line with the ellipse and choose the right one:
(%i33) line[106]:implicit(y - m[106]*x + m[106]*P[106][1]

-P[106][2]=0, x,-a-0.5,a+0.5, y,-b-0.5,b+0.5)$
(%i34) Pinters[107]:ev(solve([xˆ2/aˆ2 + yˆ2/bˆ2=1,y-m[106]*x

+ m[106]*P[106][1]-P[106][2]=0],[x,y]),numer);
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(%o34) [[x=-0.9617684510713956,y=0.6645804306788178],
[x=1.499998670984924,y=-0.001152828906202703]]

(%i35) if abs(rhs(Pinters[107][1][1]) - P[106][1]) < 0.0001 then
Pnew[107]:[rhs(Pinters[107][2][1]),rhs(Pinters[107][2][2])]
else
Pnew[107]:[rhs(Pinters[107][1][1]),rhs(Pinters[107][1][2])];

(%o35) [1.499998670984924,-0.001152828906202703]

Comparing the distance between the points Pnew[107] and P[1] we get:
(%i36) dist_P107_P1 : sqrt((Pnew[107][1]-P[1][1])ˆ2

+ (Pnew[107][2]-P[1][2])ˆ2);
(%o36) 0.001152829672266286
That is, we can say that

d(P107, P1) = 0.001152829672266286 < 0.0015,

which tell us that P107 u P1. Therefore one could expect that line[106] would be “equal” to
line[0]. We illustrate this in Figure 9b by plotting the objects of our interest:
Thus, we can conclude that reflecting a light ray from point E =

(
0, a tan(π/12)

)
into point P1 =

(1.5, 0) on the ellipse given by equation (3), the trajectory inside this ellipse of the successive reflec-
tions closes after 106 reflections.

4.3 Some other cases with Maxima
We have investigated with Maxima several other cases by changing the initial point E or the the first
point of reflection on the ellipse, namely P1. We will not repeat what was done in the previous two
cases and we have just plotted the obtained result and then compare the several cases in Table 1.
Nevertheless, in Section 7 of Supplementary Electronic Materials the reader can find the complete
code for each of the cases we have worked out.

In Table 1, we summarize some of the data we have gotten from all the different examples ad-
dressed in the paper with the CAS Maxima, and we do it for comparison purposes in order to have
a better idea of the behaviour of this computer algebra system in relation with the problems we have
investigated.

On the other hand, the last two examples included in Table 1 were not included in the paper but
the reader can easily analyze both cases by implementing a Maxima or a Maple program, similar to
those documented here for the various examples we have discussed.

4.4 Some remarks
In view of the results we have gotten, we think it will be quite illustrative for the reader if instead
of performing the calculations within a while loop, as we have done in the computer programs
documented in this paper, she/he tries to make the calculations with another iterative procedure, for
example, by using definite initial and final numeric values for starting and finishing the number of
iterations. In Maxima we can do something like the following:
(%i13) ratprint:false$
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Figure 10: Case E =
(
0, a tan(π/12)

)
and P1 = (1.3, 0.4320493798938573).

Point E Point P1 Time (in seconds) Number of points
(0, b tan(π/12)) (1.5, 0) 25.978 47
(0, a tan(π/12)) (1.5, 0) 60.562 106
(0, a tan(π/12)) (1.3, 0.4320493798938573) 148.006 258
(0, b tan(π/12)) (1.45, 0.2217355782608346) 166.266 288
(0, a tan(π/12)) (1.45, 0.2217355782608346) 240.699 420

(0.0, 0.4) (1.5, 0) 123.506 215
(0.0, 0.5) (1.5, 0) 350.181 610

Table 1: Summary of some data for the various Maxima cases.

...
(%i19) N:100$
(%i20) for i : 1 thru N do(

Pr[i] : Reflex(x0,y0,a0,b0,c0),
m[i] : (Pr[i][2] - P[i][2])/(Pr[i][1]- P[i][1]),
...
x0 : Pr[i][1],
y0 : Pr[i][2]
);

Thus, we have control on the number of iterations and this can be useful for plotting a small number
of points and lines. In this situation, we can also plot the tangent and normal lines for those few
points. Actually, in the while loop that we have documented, the command lines

TgLine[i]:implicit(y-mtg[i]*x+mtg[i]*Pnew[i][1]-Pnew[i][2]=0,
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Figure 11: Case E =
(
0, b tan(π/12)

)
and P1 = (1.45, 0.2217355782608346).

x, -a-0.5,a+0.5, y,-b-0.5,b+0.5),
...

LinePerp[i]:implicit(y-mperp[i]*x+mperp[i]*Pnew[i][1]
-Pnew[i][2]=0,x,-a-0.5,a+0.5, y,-b-0.5,b+0.5),

can be eliminated and the Maxima program runs perfectly. However, those lines are necessary if we
want to plot the straight lines they define.

On the other hand, although in all the cases that were investigated apparently we have a positive
answer concerning the periodicity of the trajectories in the different examples, a caution remark is
necessary. That is to say, we have to be aware that the closeness of points Pn and P0, for certain n,
is not a guarantee for the lines segments P0P1 and PnPn+1 to coincide, since it can happen that point
Pn+1 is far away from point P1 on the ellipse. Here we present an example in which the while
loop is completed because the condition of closeness is fulfilled, however the aforementioned line
segments are quite different.

The maxima code is the same as in the discussed examples, thus, we only present some command
lines that make up our remark.

Let us start with the point E = (0, b tan( π
12

)), as in some examples above.
(%i7) x0:0.0$ y0:ev(b*tan(%pi/12),numer)$
(%i8) E:[x0,y0]$
Now define the first point of reflection on the ellipse, namely P1, to be
(%i15) P[1]:[1.3,0.4320493798938573]
As before, it is necessary to calculate the normal line through P1 in order to calculate the parameters
for the Reflex procedure, which turn out to be
(%i18) a0:-0.9970370305242858$ b0:1.0$ c0:0.8640987597877144$
The while loop stops since the closeness condition was achieved and we get the following data:
(%i28) time(%);
(%o28) [28.532]
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Figure 12: Case E =
(
0, a tan(π/12)

)
and P1 = (1.45, 0.2217355782608346).

(%i29) length(Points);
(%o29) 50
Also we have
(%i32) P[0]; P[49]; P[50];
(%o32) [-1.499998352684478,0.001283477548325892]
(%o33) [1.313791688592809,-0.4179120318059193]
(%o34) [-1.499976831562785,-0.004813341696730361]
(%i35) sqrt((P[0][1]-P[50][1])ˆ2 + (P[0][2]-P[50][2])ˆ2);
(%o35) 0.00609685722857008

Thus we can see that points P0 and P50 are quite close to each other:

d(P0, P50) < 0.0061

Performing the remaining calculations, we get point P51 to be
(%i45) if abs(rhs(Pinters[51][1][1]) - P[50][1]) < 0.0001 then

Pnew[51]:[rhs(Pinters[51][2][1]),rhs(Pinters[51][2][2])]
else
Pnew[51]:[rhs(Pinters[51][1][1]),rhs(Pinters[51][1][2])];

(%o45) [1.273976188060564,0.4571595900247074]

However, notice that
d(P1, P51) = 0.03616298439944626

which is tell us that points P1 and P51 are not close enough. This big difference can be appreciated in
Figure 13b, between the segment lines P0P1 and P50P51.
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(a) Initial points E =
(
0, b tan(π/12)

)
and P1 = (1.3, 0.4320493798938573)

(b) Segment lines P0P1 and P50P51

do not coincide

Figure 13: Results for Maxima case E =
(
0, b tan(π/12)

)
and P1 = (1.3, 0.4320493798938573).

5 Solving the problem with Maple
As it is well known, if a computational task is achieved by either using the CAS Maxima or Maple,
then the same task can be done with the other, and viceversa. In what follows, we solve with the CAS
Maple all the cases done with Maxima in the previous section. However, for reason of space, we do
not document those Maple program and we urge the reader to consult Section 7 of Supplementary
Electronic Materials for the complete programs. Here, an important remark is that we got the same
results as those with Maxima for all the worked examples.

On the other hand, we will have the oportunity to realize how similar is the syntax for these two
computer algebra systems and also how easily is to transform one code into the other.

5.1 Case E =
(
0, b tan(π/12)

)
In this part, we redo in Maple what was done in subsection 4.1. We leave the detailed computations
for this Maple worksheet in [S10].
Now, we plot the objects of interest that are shown in Figure 14a (compare with Figure 8a):

We can proceed as in the previous cases and calculate some more lines and points in order to make
some comparisons.

The results of this last discussion can be seen in Figure 14b (compare with Figure 8b).
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(a) Reflections inside ellipse given by (3)
with the CAS Maple

(b) Segment P0P1 in line[0] is “equal” to
segment P47P48 in line[48].

Figure 14: Maple outcomes for case E =
(
0, b tan(π/12)

)
5.2 Case E =

(
0, a tan(π/12)

)
This case is parallel to that in subsection 4.2 and here, as we did before, we leave the detailed discus-
sions using Maple in [S11].
We plot what it is of our interest and proceed to complete the picture and make some comparisons, as
for example with Figures 9a and 9b:

This result shows that the closeness between points P0 and P106 and now we are able to calculate
the straight line joining the points P106 and P1, namely line[106], in order to compare it with
line[0] that is the line passing through P0 and P1. So, we proceed as previously and show the
results in Figure 15.

5.3 Some other cases with Maple
We have analyzed the same cases for Maple as those of presented in subsection 4.3 and it is not
necessary that we repeat the Maple code for those examples. Instead we refer the reader to the
Supplementary Electronic Materials in Section 7.

1. Case E =
(
0, a tan(π/12)

)
and P1 = (1.3, 0.4320493800)

Results of this example are shown in Figure 16 and detailed Maple worksheet can be found in
[S12].

2. Case E =
(
0, b tan(π/12)

)
and P1 = (1.45, 0.2217355782608346)

A summary of the results for this case are illustrated in Figure 17. The Maple worksheet can be
found in [S13].
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(a) Reflections inside ellipse given by (3)
with the CAS Maple

(b) Segment P0P1 in line[0] is “equal” to
segment P106P107 in line[106].

Figure 15: Maple results for case E =
(
0, a tan(π/12)

)
3. Case E =

(
0, a tan(π/12)

)
and P1 = (1.45, 0.2217355782608346)

The results for this example are ahown in Figure 18. The Maple worksheet can be found in
[S14].

5.4 Maple comparisons for the different cases
As in the Maxima case, we now compare the different cases we addressed with Maple and make a
summary in Table 2 and Table 3. Nevertheless, the Maxima’s default float point precision FPPrec) if
of 16 significative figures and that of Maple is 10 significative decimals, although we set that explic-
itly with Maple’s command

[> Digits:=10:

Thus, we have included two comparison tables for Maple: one with the Maple’s default float point
precision and the other one for

[> Digits:=16:

This give us a good idea about Maple’s performance with our problems and the reader can have a point
of comparison between the two CASs we have used in this paper. We leave the Maple worksheets
for the last two examples included in Table 2 in [S15] and [S16] respectively for readers to explore
further.

We note that the examples in Table 3 are not included here, but again, the reader can run the
corresponding Maple’s computer programs with no difficulty.
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Point E Point P1 Time (in seconds) Number of points
Default FPPrec

(0, b tan(π/12)) (1.5, 0) 1.314 46
(0, a tan(π/12)) (1.5, 0) 2.176 105
(0, a tan(π/12)) (1.3, 0.4320493800) 4.369 257
(0, b tan(π/12)) (1.45, 0.2217355784) 4.866 287
(0, a tan(π/12)) (1.45, 0.2217355784) 6.825 419

(0.0, 0.4) (1.5, 0) 3.844 214
(0.0, 0.5) (1.5, 0) 9.745 609

Table 2: Summary of some data for the various Maple cases (default precision.)

Point E Point P1 Time (in seconds) Number of points
FPPrec: 16

(0, b tan(π/12)) (1.5, 0) 1.363 46
(0, a tan(π/12)) (1.5, 0) 2.313 105
(0, a tan(π/12)) (1.3, 0.4320493798938573) 4.457 257
(0, b tan(π/12)) (1.45, 0.2217355782608346) 5.203 287
(0, a tan(π/12)) (1.45, 0.2217355782608346) 6.962 419

(0.0, 0.4) (1.5, 0) 4.032 214
(0.0, 0.5) (1.5, 0) 10.081 609

Table 3: Summary of some data for the various Maple cases (16 significative digits.)
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Figure 16: Maple case for E =
(
0, a tan(π/12)

)
and P1 = (1.3, 0.4320493800)

6 Conclusions
Evolving technological tools definitely have made mathematics fun and accessible on the one hand,
but they also allow the exploration of more challenging and theoretical mathematics. We hope that
when mathematics is made more accessible to students, it is possible more students will be inspired to
investigate problems ranging from the simple to the more challenging. We do not expect that exam-
oriented curricula will change in the short term. However, encouraging a greater interest in mathe-
matics for students, and in particular providing them with the technological tools to solve challenging
and intricate problems beyond the reach of pencil-and-paper, is an important step for cultivating cre-
ativity and innovation. We have used Geogebra to solve the problem we were faced out and have
documented several computer programs in the computer algebra systems Maxima and Maple, with
the purpose of investigate how a ray of light is reflected inside a given ellipse. The assumption is
that the ray starts from some specific points inside the ellipse, and then it is aimed into some other
point on the curve over which it is reflected according to the usual law of reflection. For the cases
discussed in this paper, we can say that there is enough computational evidence for the periodicity of
the trajectories determined by the succesive reflections on the curve for those particular initial points
we have started from.

The problems we have investigated resemble analogous problems in the theory of elliptical bil-
liards, which are also related to the famous Poncelet Porism, and the results obtained in the paper,
along with the presented computer programs, can be taught to high school and college students in
order to motivate more studies concerning the reflection of light rays on arbitrary curves.

Acknowledgements. The authors want to thank the referees for their useful suggestions and several
corrections of this paper.

215



The Electronic Journal of Mathematics and Technology, Volume 13, Number 3, ISSN 1933-2823

Figure 17: Maple case for E = (0, b tan(π/12)) and P1 = (1.45, 0.2217355782608346)

7 Supplementary Electronic Materials
[S1] Explorations with GeoGebra in Section 3.

[S2] Explorations with Maxima in Section 4.1.

[S3] Explorations with Maxima in Section 4.2.

[S4] Explorations with Maxima in Section 4.3.

[S5] Explorations with Maxima in Section 4.3.

[S6] Explorations with Maxima in Section 4.3.

[S7] Explorations with Maxima for point E = (0, 0.4) and P1 = (1.5, 0).

[S8] Explorations with Maxima for point E = (0, 0.5) and P1 = (1.5, 0).

[S9] Explorations with Maxima for point E = (0, b tan(π/12)) and P1 = (1.3, 0.4320493798938573).

[S10] Explorations with Maple in Section 5.1.

[S11] Explorations with Maple in Section 5.2.

[S12] Explorations with Maple in Section 5.3.

[S13] Explorations with Maple in Section 5.3.

[S14] Explorations with Maple in Section 5.3.

[S15] Explorations with Maple for point E = (0, 0.4) and P1 = (1.5, 0).

[S16] Explorations with Maple for point E = (0, 0.5) and P1 = (1.5, 0).
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Figure 18: Maple case for E =
(
0, a tan(π/12)

)
and P1 = (1.45, 0.2217355782608346)
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[5] Vladimir Dragović, and Milena Radnović, Poncelet Porisms and Beyond. Integrable Billiards,
Hyperelliptic Jacobians and Pencils of Quadrics, Birkäuser, Basel, 2010.
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